The 15 N-terminal amino acids of hexokinase II are not required for in vivo function: analysis of a truncated form of hexokinase II in Saccharomyces cerevisiae.
نویسندگان
چکیده
The function of the N-terminal amino acids of Saccharomyces cerevisiae hexokinase II was studied in vivo using strains producing a form of hexokinase II lacking its first 15 amino acids (short form). This short form of hexokinase II was produced from a fusion between the promoter region of the PGK1 gene and the HXK2 coding sequence except the first 15 codons. As expected, the in vitro analysis of the short form protein by gel filtration chromatography indicates that the short protein does not form dimers under conditions where the wild-type protein dimerizes. Kinetic studies show that the enzymatic activities are very similar to wild-type behavior. The physiological experiments performed on the strains containing the fusion allele demonstrate that the short form of the enzyme is similar to the wild-type both in terms of phosphorylation of hexoses and glucose repression. We conclude that the N-terminal amino acids of hexokinase II are not required in vivo either for phosphorylation of hexoses or for glucose repression.
منابع مشابه
Enzymatic properties of the N- and C-terminal halves of human hexokinase II.
Although previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher Km for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18 amino acids (delta18) and a truncated N...
متن کاملIsolation and characterization of mutations in the HXK2 gene of Saccharomyces cerevisiae.
Several hundred new mutations in the gene (HXK2) encoding hexokinase II of Saccharomyces cerevisiae were isolated, and a subset of them was mapped, resulting in a fine-structure genetic map. Among the mutations that were sequenced, 35 were independent missense mutations. The mutations were obtained by mutagenesis of cloned HXK2 DNA carried on a low-copy-number plasmid vector and screened for a ...
متن کاملThe residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae.
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and...
متن کاملEffects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression.
Saccharomyces cerevisiae has two homologous hexokinases, I and II; they are 78% identical at the amino acid level. Either enzyme allows yeast cells to ferment fructose. Mutant strains without any hexokinase can still grow on glucose by using a third enzyme, glucokinase. Hexokinase II has been implicated in the control of catabolite repression in yeasts. We constructed null mutations in both hex...
متن کاملCrystal structure of yeast hexokinase PI in complex with glucose: A classical "induced fit" example revised.
Hexokinase is the first enzyme in the glycolytic pathway that catalyzes the transfer of a phosphoryl group from ATP to glucose to form glucose-6-phosphate and ADP. Two yeast hexokinase isozymes are known, namely PI and PII. Here we redetermined the crystal structure of yeast hexokinase PI from Saccharomyces cerevisiae as a complex with its substrate, glucose, and refined it at 2.95 A resolution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 5 3 شماره
صفحات -
تاریخ انتشار 1989